Orbits Visiting Finite Sets

Trevor Hyde University of Michigan

Joint work with Mike Zieve

Visiting a finite set

The set-up:

- K be a field
- $f(x) \in K(x)$ be a rational function
- $p \in K$ be a point
- $S \subseteq K$ a finite set.

When does the f-orbit of p visit the finite set S ?

$$
\left\{n: f^{n}(p) \in S\right\}=?
$$

When does the f-orbit of p visit S ?

- Typically finitely often, probably never.
- However, if the f-orbit of p visits S more than $|S|$ times, then it does so infinitely often!
$\left\{n: f^{n}(p) \in S\right\}=\begin{aligned} & \text { finite union of } \\ & \text { arithmetic progressions }\end{aligned}$

Visiting a finite set again

Let's make this question more interesting by replacing all iterates of a single rational function

$$
\langle f\rangle=\left\{f^{n}: n \geq 0\right\}
$$

with all words in a finite set of rational functions

$$
\begin{aligned}
& M=\left\langle f_{1}, f_{2}, \ldots, f_{m}\right\rangle=\left\{f_{i_{1}} f_{i_{2}} \cdots f_{i_{k}}: k \geq 0\right\} \\
& M \text {-orbit of } p=M(p)=\{w(p): w \in M\}
\end{aligned}
$$

When does the M-orbit of p visit the finite set S ?

$$
\{w \in M: w(p) \in S\}=?
$$

When does the M-orbit of p visit S?

Theorem (H, Zieve)

Let K be a field and let $M=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ with $f_{k}(x) \in K(x)$ such that $\operatorname{deg}\left(f_{k}\right) \geq 2$. If $p \in K$ and $S \subseteq K$ is a finite set, then

$$
\{w \in M: w(p) \in S\}
$$

is a regular language.

A regular expression is a type of pattern used to describe a collection of words (= sequences of letters from an alphabet.)
\{Regular expressions\} is the closure of the alphabet under

- concatentation $\left(w_{1} w_{2}\right)$
- disjunction $w_{1} \mid w_{2}$
- Kleene star w^{*}

Ex. Say our alphabet consists of two letters f and g.

- $(f \mid g)^{*} f$ describes all words "starting" with f
- $\left(f^{*} g f^{*} g f^{*}\right)^{*}$ describes all words with an even number of g 's

A regular language is the collection of all words described by a regular expression.

Example

Theorem (H, Zieve)

Let K be a field and let $M=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ with $f_{k}(x) \in K(x)$ such that $\operatorname{deg}\left(f_{k}\right) \geq 2$. If $p \in K$ and $S \subseteq K$ is a finite set, then $\{w \in M: w(p) \in S\}$ is a regular language.

Ex. Let $p=2, S=\{1,4\}$, and $M=\langle f, g\rangle$ where

$$
f(x)=x^{2}, \quad g(x)=\frac{-11 x^{3}+57 x^{2}-70 x+24}{24}
$$

Then $\{w \in M: w(p) \in S\}$ is the regular language described by

$$
\left(f^{*} g f^{*} g f^{*}\right)^{*} g \mid(f g)^{*} f
$$

Preperiodic points

Say $p \in K$ is preperiodic under $f(x)$ if for some $j \geq 0, k \geq 1$

$$
f^{j+k}(p)=f^{j}(p)
$$

- What does it mean for a point p to be preperiodic under a finitely generated dynamical system $M=\left\langle f_{1}, f_{2}, \ldots, f_{m}\right\rangle$?

Preperiodic = Finite orbit

$$
0 \xrightarrow{f} 0 \xrightarrow{f} 0 \xrightarrow{f} 0_{\substack{f \\ f}}^{\substack{f \\ L_{f}}}
$$

- p preperiodic under $f \Longleftrightarrow f$-orbit of p is finite.
- Say p is preperiodic under $M=\left\langle f_{1}, f_{2}, \ldots, f_{m}\right\rangle$ if the M-orbit of p is finite.

Preperiodic = Finite orbit

Ex: Let $M=\langle f, g\rangle$ where

$$
f(x)=x^{2} \quad g(x)=x^{2}-1
$$

Then 0 is preperiodic under M.

Shape of finite orbits

- Finite orbits of $\langle f\rangle$ all have the same "shape".
- But there is a wide range of finite orbit shapes for $M=\left\langle f_{1}, f_{2}, \ldots, f_{m}\right\rangle$.

- These are deterministic finite automata (DFA)!

Deterministic finite automata (DFA)

DFA over an alphabet $f_{1}, f_{2}, \ldots, f_{m}$ is a finite directed graph A with a distinguished start state p and set S of accept states.

- vertices = states
- labelled edges = transitions.
- For each letter f_{k} there is exactly one transition labelled f_{k} out of each state.

Kleene's Theorem

An automata A is a simple machine for processing words.

- Beginning at the start state p read w one letter at a time and transition accordingly.
- If we end at a state in S, then A accepts w.
- Language of A is the set of all words $L(A)$ accepted by A.

Theorem (Kleene's Theorem)

- If A is a $D F A$, then $L(A)$ is a regular language.
- If L is a regular language, then there is a DFA A such that $L=L(A)$.

Kleene's theorem

Theorem (Kleene's Theorem)

- If A is a $D F A$, then $L(A)$ is a regular language.
- If L is a regular language, then there is a DFA A such that $L=L(A)$.

Ex. The regular language L described by the regular expression $\left(f^{*} g f^{*} g\right)^{*}\left(f^{*} g f^{*}\right)=$ all words with an odd number of g 's, is accepted by A shown below with $S=\{q\}$.

Theorem (H, Zieve)

Let K be a field and let $M=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ with $f_{k}(x) \in K(x)$ such that $\operatorname{deg}\left(f_{k}\right) \geq 2$. If $p \in K$ and $S \subseteq K$ is a finite set, then

$$
\{w \in M: w(p) \in S\}
$$

is a regular language.

- Let h be a height function on $\mathbb{P}^{1}(K)$
- $\left(\operatorname{deg}\left(f_{k}\right) \geq 2\right)$ There exists a B such that
- $h(s) \leq B$ for $s \in S$ or $s=p$,
- $h\left(f_{k}(q)\right)>h(q)$ whenever $h(q)>B$.
- Let A be the finite automaton with states consisting of
- all $q \in K$ with $h(q) \leq B$
- a "dead state" D
\triangleright Transition labelled f_{k} from q to D iff $h\left(f_{k}(q)\right)>B$.
- D only transitions to itself.
- $L(A)=\{w \in M: w(p) \in S\}$.
- Given $M=\left\langle f_{1}, f_{2}, \ldots, f_{m}\right\rangle$ can we characterize the auotmata A for which there are A-periodic points?
- Using interpolation, all automata possible for some choice of rational functions.
- If M has good reduction at a prime ℓ and p is an A-periodic point, how does the period of p modulo ℓ relate to A ?
- Does this lead to new dynamical unit constructions?
- Suppose that f is a continuous endomorphism of a real interval X. Sharkovskii proved that if f has a 3-periodic point in X, then it has periodic points of all periods in X.
- Does this generalize to the non-cyclic setting?

Thank you!

